

Volume 4, No. 7, July 2023 p-ISSN 2722-7782 | e-ISSN 2722-5356 DOI: https://doi.org/ 10.46799/jsa.v4i7.654

CLASSIFICATION OF CONGESTION IN JAKARTA USING KNN, NAÏVE BAYES AND DECISION TREE METHODS

Sri Rahayu, Bayu Rimbi Asmoro, Ery Rinaldi

Faculty of Information Technology, Budi Luhur University 2111600322@student.budiluhur.ac.id, 2111600124@student.budiluhur.ac.id, 2111600223@student.budiluhur.ac.id

Abstract

Congestion has now become a problem that occurs in almost all big cities in Indonesia. The problem of traffic jams generally occurs in areas with high intensity of activity and land use. Given the increasing level of congestion that is happening, the capital city of DKI Jakarta is one of the most densely populated cities with high population activity. Population activities are also offset by the use of transportation. Both by public and private vehicles. Traffic jams are one of the problems that are still unsolved. West Palmerah Street is one of the roads with quite a lot of traffic jams. To prove it, he did some simple research. The method used is descriptive method, where the research begins with collecting the data needed at this time through several surveys. And the calculation is done by looking for the degree of saturation (DS) and vehicle speed at three checkpoints, the DS at the pre-market checkpoint is 0.89, the DS at the market checkpoint is 1.05, and the DS at the market checkpoint is 0.89. Then the movement speed was also obtained at the pre-market observation point of 32.05 km/hour, at the market review point of 27.5975 km/hour, and at the post-market observation point of 33.35 km/hour. The results prove that there is indeed a traffic delay in front of the market. This figure is due to the large number of angkots that stop and the narrowing of the traffic lane in front of the market due to the presence of street vendors and motorbikes stopping on the sidewalks with buying and selling activities on the sidewalks. Therefore, it is necessary to apply the best operational solutions to improve traffic flow on these roads.

Keywords : Congestion in Jakarta, Classification, K-nearest neighbors, Naïve Bayes, Decision Tree.

Abstract

Congestion has now become a problem that occurs in almost all big cities in Indonesia. The problem of traffic jams generally occurs in areas with high intensity of activity and land use. Given the increasing level of congestion that is happening, the capital city of DKI Jakarta is one of the most densely populated cities with high population activity. Population activities are also offset by the use of transportation. Both by public and private vehicles. Traffic jams are one of the problems that are still unsolved. West Palmerah Street is one of the roads with quite a lot of traffic jams. To prove it, he did some simple research. The method used is a descriptive method, where the research begins by collecting the data needed at this time through several surveys. And the calculation is done by looking for the degree of saturation (DS) and vehicle speed at three checkpoints, the DS at the pre-market checkpoint is 0.89, the DS at the market checkpoint is 1.05, and the DS at the market checkpoint is 0.89. Then the movement speed was also obtained at the pre-market observation point of 32.05 km/hour, at the market review point of 27.5975 km/hour, and at the post-market observation point of 33.35 km/hour. The results prove that there is indeed a traffic delay in front of the market. This figure is due to the large number of angkots that stop and the narrowing of the traffic lane in front of the market due to the presence of street vendors and motorbikes stopping on the sidewalks with buying and selling activities on the sidewalks. Therefore, it is necessary to apply the best operational solutions to improve traffic flow on these roads.

Keywords: Congestion in Jakarta, Classification, K-nearest neighbors, Naïve Bayes, Decision Tree.

INTRODUCTION

Data mining is a method of determining certain patterns from a large amount of data. Data mining has many techniques, one of which is a classification technique. Classification is a data learning technique for generating value predictions from a series of attributes (Wahyuningsih & Utari, 2018) . Classification is widely used to predict classes on certain labels by classifying data (building models) based on training sets and values (class labels) when classifying certain attributes. Classification is divided into five categories based on differences in mathematical concepts, namely statistical based, distance based, decision tree based, neural network based, and rule based. Classification has many algorithms, but in this study using decision tree, KNN and Naïve Bayes algorithms (Sartika & Sensuse, 2017) . Of the three algorithms, the decision tree is one of the most commonly used methods, especially in data classification.

In case studies of sentiment analysis of BPJS service users using the KNN, Naïve Bayes and Decision Tree methods it proves that the Decision Tree method has a high level of accuracy in data classification (Puspita & Widodo, 2021). In a comparative case study of the K-Nearest Neighbor Data Mining Method with Naïve Bayes for the classification of Congestion in Jakarta, the KNN method is proven to have high accuracy compared to Naïve Bayes (Rahman et al., 2018). Compared to the Naïve Bayes method, this method rarely has a high level of accuracy, so this study will compare the three algorithms based on their level of accuracy, which method is the best for classification.

Based on the existing problems, specifically to compare the three decision tree methods, KNN and Naïve Bayes, a study was carried out with the title " Classification of Congestion in Jakarta Using the KNN, Naïve Bayes and Decision Tree Methods " using the rapid method. Mining software to find the highest accuracy value of the three methods that will be implemented in data classification is a comparative analysis of traffic jam accuracy using KNN, naive Bayes and decision tree classification data. The purpose of this study is to compare the three best methods used in the classification of congestion with maximum accuracy results.

A study that discusses the Naïve Bayes, KNN and Decision Tree methods for sentiment analysis of traffic jams with the problem of traffic conditions in the city of Jakarta which are so dense and congestion is increasing, that residents who want to work need more comfortable transportation (Riadi & Kom , 2017) . This research uses social media Twitter to get random data for up to 127 dates. Using the Naive Bayes Classifier, KNN and Decision Tree methods with several stages, namely emoticon conversion, cleaning, case stacking, tokenization and stemming (Romadloni et al., 2019) . The results obtained with the decision tree method have the highest accuracy compared to KNN and Naïve Bayes, where the decision tree has 100% accuracy, 100% accuracy, 100% sensitivity and 100% specificity. The KNN method has 80% accuracy, 100% accuracy, 50% sensitivity, 100% sensitivity and 66.67% specificity.

Research on the classification of traffic jams uses a comparison of the K-Nearest Neighbor and Naïve Bayes data mining methods. Monitoring and processing of the surrounding environment, including water resources, is necessary to create traffic jams that comply with congestion standards (Rahman et al., 2018). The accuracy results are 82.42% for K-Nearest Neighbor and Naïve Bayes of 70.32%, it can be concluded that KNearest Neighbor is the best method for determining congestion.

In the research on sentiment analysis of BPJS users using the KNN, Decision Tree and Naïve Bayes methods, discussing people who use BPJS services, which often raises pros and cons, for this reason, data mining sentiment analysis research was carried out on BPJS.

Twitter users with 1,000 entries are filtered down to 903 due to duplicate data. Implement the KNN, Decision Tree and Naïve Bayes methods to compare the level of accuracy of the three methods used (Puspita & Widodo, 2021) . This study used rapid miner software version 9.9, where the results obtained were that the KNN method had an accuracy rate of 95.58%, a decision tree was 96.13% and the Naive Bayes method was 89.14%, so it can be concluded that the best method for decision making decision tree is used.

Data Mining is the process of obtaining information to obtain new information (Harahap, 2019). The research conducted this time uses data mining techniques that implement the K-nearest Neighbors, Naïve Bayes and Decision Tree methods to compare the results of the maximum accuracy of the three methods used. Data mining is a data source and use operation that is used to find relationships or patterns from large data sets to obtain new information (Cahyanti et al., 2020).

The K-Nearest Neighbor algorithm is a classification method for a dataset based on previously classified training data (Siregar et al., 2019) . The KNN classification algorithm is a method for classifying objects based on training data that has the shortest distance (Romadloni et al., 2019) . The working principle of the KNN algorithm is to determine and find the shortest distance to the nearest neighbor value in the training data with the data to be tested. The best k value for this algorithm depends on the data value, where usually a high k value reduces the effect of errors or noise on the classification process, but creates suboptimal boundaries between classifications (Sukmana et al., 2020) . This research will carry out a computational process to obtain accurate data results using the KNN method. The formula for finding the distance using the Euclidean formula:

$$\mathbf{d}_{i} = \sqrt{\sum_{i=1}^{p} (\mathbf{x}_{2i} - \mathbf{x}_{1i})^{2}}$$

where x1 is sample data; d is distance; x2 is test data; p is the data dimension, i is the data variable.

Naive Bayes Classifier is a data mining method for data classification. The operation of the Naive Bayes Classifier method uses probabilistic calculations. Naive Bayes is one of the algorithms included in the classification technique (Zulfauzi & Alamsyah, 2020). The basic concept of Naive Bayes uses the Bayes theorem, which is a theorem used in statistics that is used to calculate probabilities. The Naive Bayes Classifier calculates the probability of one class from each group of attributes and determines the most optimal class (Lestari et al., 2021). The Naive Bayes classifier function calculates and looks for the highest probability value to classify test data into the correct category. A simple probability

prediction technique based on the application of the Bayes theorem or Bayes rule is a technique implemented in the Naïve Bayes algorithm. Naive Bayes Formula:

$$\mathbf{P}(\mathbf{H}|\mathbf{X}) = \frac{\mathbf{P}(\mathbf{H})\mathbf{P}(\mathbf{X}|\mathbf{H})}{\mathbf{P}(\mathbf{X})}$$

where X is data with unknown class; H is the hypothesis that data X is class specific; P(H|X) is the probability of the hypothesis H under condition X ; P(H) is the probability of the hypothesis H (prior probability); P(X|H) is the probability of X based on the conditions in hypothesis H; P(X) is the probability of X

The data classification process can use several methods, one of which is a decision tree. The decision tree is one of the commonly used algorithms for decision making (Pamuji & Ramadhan, 2021). The decision tree is an algorithm that is good for classification or prediction (Muningsih, 2022). The Decision Tree Model is in the form of a tree which consists of several parts, namely the root node, internal node, and terminal node. The root node from searching query data and the internal node that reaches the end node is the classification process in this decision tree method. The concept of entropy to be used to determine which attribute in the decision tree to split, the higher the sample entropy, the less pure the sample is. The formula for calculating sample entropy is:

 $Entropy(S) = -P_1 \log_2 P1 - P2 \log_2 P_2$

where p1, p2, p3, pn respectively represent class 1, class 2,..... class n proportions in the output.

Classification of Congestion in Jakarta Using KNN, Naïve Bayes and Decision Tree Methods

METHODOLOGY

In this study several stages were used which are presented in the form of Figure 1 Research Stages.

Gambar 1. Tahapan Penelitian

The first stage of this research begins with mining data on Twitter using Orange Software and of course the Twitter website. The second stage is the study of literature as a collection of information relating to the preparation of the final project. Collecting information to support this research in the form of journals, books, references and other reliable sources. Not spared from discussions and consultations, as well as research methods during the preparation of this diploma thesis, discussions and consultations with supervisors and various experts in this field. The data processing process at Rapid Miner includes several steps, starting from data sets, pre-processing, data separation into training data and data testing, model fitting/classification, prediction/model application, and the resulting process. The data processing carried out will produce a result or result that will be discussed and produce a conclusion in the research process carried out.

RESULTS AND DISCUSSION

Datasets

In this study, the overloaded csv data type dataset was used for the classification process as well as to compare the results of the accuracy of the three methods used, namely Naive Bayes, Decision Tree and KNN. The results of the data obtained in Table 1.

Table 1 Traffic jam dataset on Twitter

	AutoSa		9-0-1	ditatena	eretani 🛩		P Search					19.00 miles			biore, re		10	- 0		×
	Elle	Home ins	ert Page Leyout /	Formulan	Data in	Niew 1	view: H	elp (Com	ments p	5 Shar	
	0	A Calber B - B I	- n - A / U - 표 - 🕹 - A	· ≡≡		fliwnae Billiong	finit e A Curtor	- \$ -	* % • 😫		andtional 4	amit at (Dolete - Format +	WES	San	7 .0 a inaa	Analyze Top		
	01000	1.15	Tarit	16	Nor	ment		15	North			100		-colik		1.00		Anatom		
	i desera		and the second		11/22															
1			the Tassaction	107																
1	sent	ment Content	C 0 Author Date	t Langua	e Location	G Number	H o Number	o in Reply	T Author N	K In Author 1 L ⁴ string	L De Author T	M W.Author Fr	N Author Fe	O Author	Lis Aut	P hor Vel	Q Longitude	R Latitude	5	Ċ
ŝ	Conto	mata	meta meta	mete	meta	mata	meta	meta	meta	meta	meta	meta	meta	meta	met		meta	meta		
4		0 Apaon	@ariefsell 2/6/2023 17	7:20 in		1	0	0 @ariefs	ell Han Jim-	P bukan a	nc 341	8 103	5 31		0 F/	ALSE				
5	-7.1	4286 RT @yosu	@hrtattoc 2/6/2023 17	7:19 in			0	2	Penayu 5	u Bus	4345	0 2428	565	5	3 F/	ALSE				
6	6.66	6667 @Outsta	Øseifinco 2/6/2023 17	1:15 in			0	0 ØOutsta	an yeemays	r Kritik Be	rc 225	4 375	5 12	1	0 #	ALSE				
7	6,89	6552 @detikco	@inibijku 2/6/2023 17	7:15 in			0	0 @detika	or Bijikita	Bijiku-bij	jn 3	9 41	1 0)	0 F/	ALSE				
8	-6.6	6667 kT @nu_	: @Akhmac 2/6/2023 17	7:15 in			0	2	Akhmad	Syarief K	64	3 490	0 65	2	0 F/	ALSE .				
9		O.RT	@hearmic 2/6/2023 17	14 in			0 1	16	Hearmid	Just a git	ri 335	3 551	1 11	1	0 F/	ALSE				
31	i	0 @PartelS	@feuritu 2/6/2023 17	14 in			1	0 @Partal	SelfG	You can'	1 1629	6 554	4 168	5	0 F/	ALSE				
11	-0.0	6667 RT ginu	Bkerusak 2/6/2023 17	1:13 in			0	2	Mahesw	aiKadang	su 823	0 180	3 10	3	0 #	ALSE				
12	1	0 - fakta	@wildan3 2/6/2023 17	13 in			0	0 @wildar	3 Wildan 5	IC. Minir	mi 787	5 193	3 166	5	6 F/	ALSE				
1	-3.4	4828 "Overthin	@wilden3 2/6/2023 17	111 in			0	0	Wilden 5	IC. Minir	mi 787	5 193	168	5	6 8/	BELA				
1.24		0 wong! rei	@Plgment 2/6/2023 17	1:12 in			0	0	PALEMIS	Al Base aut	to 96	9 210	5 1545		1 5/	ALSE				
35		3.125 @ridwan	Batria_e 2/6/2023 17	111 in			0	0 gridwa	nklajakMas	a Segula y	ar 124	6 423	3 116	5	0 F/	ALSE				
31	1	-6.25 RT	@wafahai 2/6/2023 17	10 in			0 1	8	gogrokka	in renggin.	ar 210	9 240	5 45	5	0 6/	ALSE				
17	ř -	0 RT @hzni	@fyhza1 2/6/2023 17	1:08 in			0 9	91	0",† ân	just bere	ed 778	3 299	9 44	L	0 F/	ALSE				
11	£	0 @subsch/	Babbyu 2/6/2023 17	7:08 in			0	0 @subsci	hfiai nunga	ulai, 19 tak	hu 411	2 161	1 30)	0 84	ALSE				
11		0 Posted	@HBojony 2/0/2023 17	7:08 in			0	0	Humas P	olsek Boja	mi 416	8 123	238	1	0 F/	ALSE				
21	3.70	3704 Lhe buker	@AiDigit4 2/6/2023 17	7:07 in			0	0	AiDigit		1190	1 150	0 10)	0 F/	ALSE				T
21	1 11.3	13333 RT	Bpratam: 2/6/2023 17	106 in			0 1/	15	Pratama	Foodie, 1	ba 1697	4 271	1 156		0 \$	ALSE				
-10		datakema	cetan2	toffic.la		3	0	n	Resta Th	in Alizan Die	130300 4	n U	1711003		75 7	ni)r				•
-	4	Acamitety Da	ralable											100	E (1	E	I	-	44.9	1078
Ē	F	· ·		00	10	CI 11	-	100	2 4	1 28	2	-	-	2	68	E	14	(P.4)	7.42.4	W

Pre-processing and Labeling

The data obtained in this study need to be processed first. Knowing the nature of the textual data previously collected, the data labeling process was carried out. The attribute identified in this study is pitability, an attribute that indicates whether bottlenecks can be overcome. The labeling process can be done by setting the color on the label to facilitate the research process. Several pre-processing methods are used, namely data validation to obtain good data with proper accuracy, to review the type of data obtained, and to identify data so as to achieve a maximum level of accuracy. Make inconsistent data consistent by replacing all missing operators. Data validation identifies and eliminates data that is not used, as well as inconsistent data and missing data, where raw data becomes data that is ready to be processed and can be analyzed through data cleaning and data

filtering processes. in the data validation process (Teak, 2021) . This study uses data integration and transformation methods to increase the accuracy of the three methods used. The Reduce Data Size and Decretize methods are used to remove duplicate data using the delete duplicate operator. The initial data condition of 1,000 becomes clean data through a process of data validation, data integration and transformation, as well as data size reduction and discretization so that the data can be analyzed to obtain new data information.

Keyword Determination in Orange: Jakarta Traffic jams

Process Preprocessing Data

e Degard Dodisorts	*	Préprocess Text - Orange	
	Disprocements	Transformation	× =
i 🛃 🖬	19 Transformation A	Unerrare	
aller Paulettines Data betw	A Normalization	🗭 Ramove moreta	
· at he	⊽ Filtering	🕑 Parse Hini	
	ia. N-grama Range lie POS Tanger	V Receive alle	0
Donary Calor Pedary	Province	Tokenization	*
		O Word Punctuation	
174metorm		Witnesson	
Visualizo		C Sertence	
Model		The register future with	
Evaluate		Let the	
Unsupervised		Filtering	×
Textable		🗹 Stapwords - Dickreation + alioperord.bd +	- 0
Text Mining	and a	Dadam (now) w	- 0
process Text		Rambers Chickelens	
trust a test pro-processing pipeline.	1 Apply Automatically	Repear 1.11:1.0107000001+10077717000_0-1-1-05486*5+	(=(V/I(I)) +
State of the second state and	2 B -8 - B-	17.54 - 17 17.54 - 18.5 - 18.5	100

Word Cloud

		Word Cloud - Orange	- 🗆 🗙
Cloud antivences	- 194	aniesbaswedan	
Words is weights Weight Word 37 jalartis 6 ga 5 bigt 5 yg 5 presiden 3 5 tanggolamkarannebasoedar 4 gie 4 bange 4 bange 4 bange 4 bange 3 jung 3 weight 3 ga 3 iung 3 annang 3 motol 3 das 3 gulang 3 apulang 3 apulang 3 apulang	*	terned between general setters menuntaskan genesada kampung utara beden tuned between general guinan general sustain initiagtan tuler berkantor bawa 2014 menit wewee beden tuler berkantor bawa 2014 menit wewee katana data terned mengatasi kat. Dresiden data bata tuler terned and the setters menuntaskan genesada kujan degeneral tuler berkantor bawa 2014 menit wewee kujan degeneral tuler berkantor berkantor berkantor bawa 2017 degeneral tuler berkantor berkantor berkantor berkantor berkantor tuler berkantor berkantor berkantor tuler berkantor berkantor tuler berkantor berkantor tuler berkantor berkantor tuler berkantor berkantor tuler	

Classification of Congestion in Jakarta Using KNN, Naïve Bayes and Decision Tree Methods

NLTK process in Google Colabs

Data Upload Process Using Pandas file *.csv

A		-		🛆 👐 🛅 🕹	- 🗴 🦻 🖉 🚥	m k		0	0		
ProjectUASBayuRahayu.ipynb File Edit Lihat Sinipkon Runtime Fitur	슈 Bantua	n E	ırakhir diaktor	an cade 02.25				🗖 Kon	neritar 😃	Bagikan	0 3
File C ×	+ Kodi	e +	Teka					RAM Dask	÷.	/ Menge	idit 🖉
Da La Ma Kon Da - Ma sample_data Be README md	•	ispo ispo TWEE TWEE	rt pendes rt nukpy a T_DATA = pi T_DATA.bea	at pd o np d.read_tav("databa d()	macatanl.civ")						
anscortibe (son california, housing, test. cav california, housing, test. cav california, housing, train.cav mnist, test.cav	D		sentiment	t Content	Author	Date	Language	Location	Number of Likes	Number of Retweets	In Reg
mnist_train_amail.trav datakemacetan2.osv		0	continuou	a atring	@zippyvane @ziahilya @MuhammadRezaS_ @mnaviol_	Sme	in en es de da zos	ID SG	continuous	continuóus	Btit Gagu Bh Gocor
			Nat	¢ meta	meta	meta	meta	meta	meta	meta	
				Apaan tuh cicil							
				rumah Samo		2/6/2023		and a		100	12232

Stopword process

Case Folding Process

Accuracy Measurement with Confusion Matrix

Confusion Matrix is a classification method based on the results of the classification that has been done, where the accuracy of the classification affects the performance of the classification. The confusion matrix provides comparative information on the classification results carried out by the system (model) with the actual classification results (Fikri et al., 2020).

The confusion matrix describes the performance of the classification model on a set of test data whose true values are known. Confusion Matrix is used to calculate accuracy.

Confusion Matrix

Kelas	Terklarifikasi Positif	Terklarifikasi Negatif
Positif	TP (True Positive)	FN (False Negative)
Negatif	FP (False Positive)	TN (True Negative)

Confusion Matrix performance can be measured using the TP, FP, FN, and TN values. True Positive is positive data that is predicted to be correct. True Negative is negative data that is predicted to be true.

Calculating accuracy using the equation

$$accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FN+FP}}$$

Naive Bayes Algorithm Accuracy Results

Confusion Matrix Naïve. Bayes accuracy: 63.60%							
	true 0	true 1	class precision				
pred. 0	788	430	64.70%				
pred. 1	100	138	57.98%				
class recall	88.74%	24.30%					

The accuracy result is 63.60%, with class precision for pred. zero (pred. negative) is 64.70% and pred one (pred.positive) is 57.98%. Accuracy results are obtained using equation 4, where the true positive values are 788, true negatives are 138, false negatives are 430, and false positives are 100. Accuracy results can be proven by:

 $accuracy = \frac{788 + 138}{788 + 138 + 430 + 100} = 63.60\%$ Performance Vektor:

Tabel 4. Performan	ce Vektor No	üve Bayes
PerformanceVector: accuracy: 63.60% ConfusionMatrix:		R 8
True	0	1
0	788	430
1	100	138

Syntax Admiration, Vol. 4, No. 7, July 2023

Performance Vector itself is a form of description of the table of analysis results obtained in the research conducted. The True Positive value is 788, which is a positive data value which means that water is safe to drink and is predicted to have the correct value. The False Positive value is 100, where the data is negative (water is not drinkable) but is predicted as positive data. The False Negative value is 430, positive data but predicted as negative data. The True Negative value is 138, which is negative data that is predicted to be true.

Decision Tree Algorithm Accuracy Results

	true 0	true 1	class precision
pred. 0	817	208	79.71%
pred. 1	71	360	83.53%
class recall	92.00%	63.38%	

Confusion Matrix Decision Tree

The accuracy result is 80.84%, with class precision for pred. zero (pred. negative) is 79.71% and pred one (pred.positive) is 83.53%. The accuracy results are obtained using equation 4, where the true positive values are 817, true negatives are 360, false negatives are 208, and false positives are 71.

$$accuracy = \frac{817 + 360}{817 + 360 + 208 + 71} = 80.84\%$$

Performance Vector

Tabel 6. Hasil Perf	formance Vektor	Decision Tree
PerformanceVecto accuracy: 80.84% ConfusionMatrix:	ır:	
True	0	1
0	817	208
1	71	360

Performance Vector itself is a form of description of the table of analysis results obtained in the research conducted. The True Positive value is 817, which is a positive data value which means that water is safe to drink and is predicted to have the correct value. The False Positive value is 71, where the data is negative, but it is predicted as positive data. The False Negative value is 208, positive data but predicted as negative data. The True Negative value is 360, which is negative data that is predicted to be true.

Accuracy results of the K-nearest neighbors algorithm

	true 0	true 1	class precision
pred. 0	836	139	85.74%
pred. 1	52	429	89.19%
class recall	94.14%	75.53%	

Confusion Matrix KNN

Accuracy results were obtained at 86.88%, where the class precision for pred. zero (pred. negative) is 85.74% and pred one (pred.positive) is 89.19%. The accuracy results are obtained using equation 4, where the true positive values are 836, true negatives are 429, false negatives are 139, and false positives are 52.

$$accuracy = \frac{836 + 429}{836 + 429 + 139 + 52} = 86.88\%$$

Performance Vector:

Tabel 8. Hasil Perf	ormance Ve	ktor KNN
PerformanceVector: accuracy: 86.88% ConfusionMatrix:		
True	0	1
0	836	139
1	52	429

Performance Vector is a form of description of the table of analysis results obtained in the research conducted. The True Positive (TP) value has a value of 836, which is a positive data value. The False Positive value is 52, where the data is negative (water is not drinkable) but is predicted as positive data. The False Negative value is 139, positive data but predicted as negative data. The True Negative value is 429, which is negative data that is predicted to be true.

The data classification process uses several operators to carry out classification methods, including CSV reading, data partitioning, model application, and performance. Classification methods such as KNN, Naïve Bayes and Decision Tree. These operators have their respective functions, the CSV read function is to import CSV data that has been obtained, in CSV read mode the preprocessing method is carried out, where the preprocessing function is to display imported data sets, whether there are inconsistent data or missing values. The Split data operator works by taking a set of examples as input and sending a subset of the sample sets through its output port. To use the classification method, use the model features. Performance is used to display the accuracy of all types of classification methods.

Accuracy Results

Comparison of Accuracy Results					
Naïve-Bayes	K-nearest neighbors	Decision tree			
63.60%	86.88%	80.84%			

Comparative analysis of Water Quality accuracy using data from classification results with K-nearest neighbors, Naïve Bayes, and Decision Tree shows that K-nearest neighbors is the method that produces the highest level of accuracy, namely 86.88% for the classification of quality data used in this study, while Naïve -Bayes is 63.60% and Decision tree is 80.84%.

Taxonomy Table

No	Writer	Research Title	Method	Results
1.	Adi Kusuma,	Sentiment Analysis	Naïve Bayes	This study attempts to analyze
	Agung Nugroho,	on Twitter of the		sentiment to see public perception of
	2021	Increase in Basic		the issue of increasing basic
		Electricity Rates		electricity rates on Twitter social
		Using the Naïve		media using the Baïve Bayes method
		Bayes Method		by classifying sentiments into
				positive, negative and neutral. From
				the results of research that has been
				done, it can be seen that the most
				negative sentiment is formed around
				60% in response to the issue of
				increasing the basic electricity rate.

2	Rani Nooraeni,	Twitter Data	Support Vector	From the original data classification
	Aulia Fikri	Sentiment Analysis	Machine (SVM)	model, training or testing, the
	Fadhilah, Heny	Regarding the Issue		percentage of responses in the form
	Dwi, Siti	of the KPK Bill		of negative sentiment related to the
	Fatimatul,	Using the Support		KPK Bill issue was 60.9 percent
	Suciarti Pertiwi,	Vector Machine		greater than the percentage of
	Yulianus	(SVM) Method		positive sentiment of 39.1 percent.
	Ronaldias, 2020			The performance of the SVM model
				in classifying sentiment is quite good
				because it has an accuracy, sensitivity
				and specificity value of 81.32 percent,
				71.47 percent and 87.64 percent,
				respectively.
3	Dianati Duei Putri	ANALYSIS OF THE	NAIVE BAYES	This research uses 1546 data tweets.
	1, Persistent	PERFORMANCE	CLASSIFIER	The results of this study found that
	Forda Nama2 ,	SENTIMENT OF THE		the DPR received 95 positive tweets
	Wahyu Eko	COUNCIL OF		with a polarity of 0.75 or 75% positive
	Sulistiono, 2022	REPRESENTATIVES		sentiment, 693 neutral tweets with a
		(DPR) ON TWITTER		polarity of 0.79 or 79% neutral
		USING THE NAIVE		sentiment and 758 negative tweets
		BAYES CLASSIFIER		with a polarity of 0.82 or 82%
		METHOD		negative sentiment with an accuracy
				score of 0.8 or 80%. based on testing
				data as much as 20%.

4	Amelia	SENTIMENT	ICI Twitter	1) conduct an analysis of public
-	Svabadati1)		Sentiment	sentiment regarding PSBB DKL lakarta
	Novort Cyril		Analysis	volume II: 2) see the impact of this
	Lengkong2)		Anarysis	sentiment on the ICI movement: 3)
	Ouditiona			compare the results of soveral
	Santris),			
	Septriyan	MOVEMENTS		logistic regression, k-nearest
	Machsus4),			neighbor, random forest, and naive
	Yongki Ramanda			Bayes. Scraping Twitter data for the
	Putra5) <i>,</i> Rani			period September 8 - October 9 was
	Nooraeni			carried out using Orange and RStudio
				software. Furthermore, sentiment
				analysis with Orange classifies
				sentiment into positive and negative
				groups.
5	Puji Nurmawati1,	SENTIMENT	NAIVE BAYES	From the analysis carried out using
	Endang	ANALYSIS OF KPOP		the Naïve Bayes classification
	Supriyati2, Tri	FANS ON TWITTER		algorithm, there are negative
	Listyorini	SOCIAL MEDIA		sentiment polarities of 34.2%, 58.5%
		USING NAIVE		neutral, and 7.3% positive. Of the
		BAYES (CASE		1000 data taken according to the
		STUDY OF BTS		polarity results of the tweets, 342
		GROUP FANS)		were negative according to the
				polarity results. With an accuracy rate
				of 75%. From this research it is hoped
				that it can assist in the process of
				sentiment analysis and is appropriate
				in overcoming existing problems.
6	Primandani Arsi*	SENTIMENT	SUPPORT	In this study, it is proposed that the
	1 , Retno Waluyo	ANALYSIS OF	VECTOR	Support Vector Machine (SVM)
		INDONESIAN	MACHINE	method be applied to tweets on the
		CAPITAL REMOVAL	(SVM)	topic of moving the Indonesian
		DISCOURSE USING	ALGORITHM	capital city for the purpose of
		SUPPORT VECTOR		classifying sentiment classes on
		MACHINE (SVM)		Twitter social media. Technical
		ALGORITHM		classification is done by classifying

				into 2 classes namely positive and
				negative. Based on the results of tests
				carried out on tweets on the
				sentiment of moving the capital city
				from social media Twitter, as many as
				1,236 tweets (404 positive and 832
				negative) using SVM obtained
				accuracy = 96.68%, precision =
				95.82%, recall = 94.04% and AUC =
				0.979.
7	Angelina Puput	ANALYSIS OF	CLASSIFICATION	This study compares the NB, SVM, K-
	Giovani1),	SENTIMENT OF	ALGORITHM	NN methods without using feature
	Ardiansyah2), Tuti	GURU		selection with the NB, SVM, K-NN
	Haryanti3), Laela	APPLICATION ON		methods that use feature selection
	Kurniawati4) ,	TWITTER USING		and compares the Area Under Curve
	Windu Gata	CLASSIFICATION		(AUC) values of these methods to find
		ALGORITHM		out the most optimal algorithm. The
				test results show that the best
				optimization application in this model
				is the SVM-based PSO algorithm with
				an accuracy value of 78.55% and an
				AUC of 0.853. This research
				succeeded in obtaining the best and
				most effective algorithm for
				classifying positive comments and
				negative comments related to the
				Ruang Guru application.
8	Afif Nor Yusuf 1,	Sentiment Analysis	Naïve Bayes	The results of the Naïve Bayes
	Endang Supriyati	Regarding	Classifier	method are very good. To test the
	2 , Tri Listyorini	Indihome Service		level of accuracy of the system in
		Providers Based on		classifying opinions, so that the test
		Customer Opinions		obtains classification results. The
		Through Social		results of the classification obtain an
		Media Twitter with		average yield of 74.5%. The more
		the Naïve Bayes		training data that is similar to the
		Classifier Method		

				testing data, the better the
				classification results will be.
9	Yan Wategulis	IMPLEMENTATION	K-MEANS	The accuracy of the classification
	Svaifudin 1 Rizki	OF CLUSTERING		using the Support Vector Machine
	Andi Irawan			algorithm is 74 39% Furthermore
		TWITTER DATA		oninion data from the questionnaire
		SENTIMENT ON		was added to classify beaches based
		BEACH TOURISM		on the availability of resources
				facilities access community
		K-MEANS METHOD		readiness market notential and
				tourism position. In the process of
				grouping this data, the K-Means
				mothed is used
				methou is used.
10	Imam Kurniawan	Implementation of	K Moons and	The purpose of this study is to obtain
10	1 Aiib Sucanto	the K Means and		an analysis of toxt documents to
	I, AJID SUSAIILU		Classifier	all allalysis of text documents to
		Classifier Methods	Classifier	obtain positive of negative
		for Continent		Sentiments. The method used is K-
		for Sentiment		wears for clustering the training data
		Analysis for the		and the Naive Bayes classifier for
		2019 Presidential		classifying the testing data. The
		Election (Plipres)		results of this weighting are in the
				form of positive and negative
				sentiments. The data was taken from
				Twitter regarding the 2019
				presidential election as many as 500
				tweet data. From the test results of
				100 and 150 test data obtained an

				average accuracy of 93.35% and an error rate of 6.66%.
11	Sigit Suryono, Em a Utami, Em ha Taufiq Luthfi	SENTIMENT CLASSIFICATION IN TW ITTER WITH NAIVE BAYES CLASSIFIER	NAIVE BAYES CLASSIFIER	From the results of the 3 trials, the accuracy rate in the first trial was 64.95%, second 66.36% and third 66.79%. Other results obtained from the classification process were positive sentiment 28% negative sentiment 20% and neutral sentiment 52%. Based on the results of the sentiment class percentage, neutral sentiment is the most common sentiment when it comes to the topic of President Joko Widodo and his government.
12	Tati Mardiana1; Hafiz Syahreva2; Tuslaela	COMPARISON OF CLASSIFICATION METHODS ON FRANCHISING BUSINESS SENTIMENT ANALYSIS BASED ON TWITTER DATA	Sentiment, Python, Twitter, Comparison.	The test results with the confusion matrix obtained an accuracy value of 83% for Neural Network, 52% for K- Nearest Neighbor, 83% for Support Vector Machine, and 81% for Decision Tree. This research shows that the Support Vector Machine and Neural Network methods are the best for classifying positive and negative comments related to franchising.

13	Dedi Darwis 1,	APPLICATION OF	SVM	This research produced 1890 data
	Eka Shintya	SVM ALGORITHM	ALGORITHM	and 3846 terms/words from the
	Pratiwi 2, A.	FOR SENTIMENT		preprocessing results and then
	Ferico	ANALYSIS ON		calculated the value of the
	Octaviansyah	CORRUPTION		appearance of the word for labeling
	Pasaribu	ERADICATION		which resulted in positive, negative
		COMMISSION		and neutral sentiments. Based on the
		TWITTER DATA OF		test results generated, the application
		THE REPUBLIC OF		of the SVM method produces an
		INDONESIA		accuracy value of 82% and produces
				sentiment with a greater negative
				label with a total of 77%, 8% positive
				label and 25% neutral label.
14	Fira Fathonah1),	The Application of	Naïve Bayes	Naïve Bayes is considered to have
	Asti Herliana	Sentiment Analysis		good potential in classifying
		Text Mining		documents compared to other
		Regarding the		classification methods in terms of
		Covid - 19 Vaccine		accuracy and efficiency. Based on the
		Using the Naïve		results of testing 100 training data
		Bayes Method		which were then re-selected using
				data crawling techniques into 34
				data, it was found that sentiment
				analysis from Twitter users for the
				COVID-19 vaccine This obtained an
				accuracy percentage of 100%
15	Ragil Dimas	Comparison of the	Support Vector	The data obtained is 14208 lines by
	Himawan # 1 ,	Accuracy of Tweet	Machine, Naïve	querying tweets containing the word
	Eliyani	Sentiment Analysis	Bayes, Random	or mentioning the username
		for the Provincial	Forest Classifier	@dkijakarta, which will be grouped
		Government of DKI		by sentiment class, namely negative,

Jakarta during the		neutral and positive using the TF-IDF
Pandemic Period		Vectorizer for word weighting and
		classification using several methods,
		namely random. forest classifier with
		75.81% accuracy, naive Bayes
		algorithm with 75.22% accuracy, and
		support vector machine algorithm
		77.58%. A sentiment analysis process
		was carried out on tweets with the
		percentage of negative, neutral and
		positive results, respectively, namely,
		8.8%, 83.6%, 7.6%.
	Jakarta during the Pandemic Period	Jakarta during the Pandemic Period

CONCLUSION

The purpose of this study is to find out the results of the accuracy comparison of the research methods used, namely K-nearest neighbor, Naïve Bayes and Decision Tree. Judging from Class Recall and Class Precision, the method that provides the highest level of precision is the decision tree which is equal to 86.88%. The Decision Tree and KNN classification methods in this study were used quite well because they produced an accuracy rate above 80%, but other methods can be used to obtain maximum accuracy results for further research.

BLIBLIOGRAPHY

- Cahyanti, D., Rahmayani, A., & Husniar, SA (2020). Analysis of the performance of the Knn method on the dataset of patients with breast cancer. *Indonesian Journal of Data and Science*, *1* (2), 39–43.
- Fikri, MI, Sabrila, TS, & Azhar, Y. (2020). Comparison of the Naïve Bayes method and the support vector machine for Twitter sentiment analysis. *SMATIKA Jurnal: STIKI Informatika Jurnal*, *10* (02), 71–76.
- Hope, PN (2019). Implementation of Data Mining in Predicting Sales Transactions Using the Apriori Algorithm (Case Study of PT. Arma Anugerah Abadi Branch of Sei Rampah).
 MATICS: Journal of Computer Science and Information Technology (Journal of Computer Science and Information Technology), 11 (2), 46–50.
- Jati, NP (2021). S Integration of Kansei Engineering and Kano Based on Natural Language Processing (NIp) to Support the Development of Service Products in Borobudur Temple Tourism .
- Lestari, UI, Nadhiroh, AY, & Novia, C. (2021). Application of the K-Nearest Neighbor Method for a Decision Support System for the Identification of Diabetes Mellitus. *JATISI (Journal of Informatics Engineering and Information Systems)*, 8 (4), 2071–2082.
- Muningsih, E. (2022). Combination of K-Means and Decision Tree Methods with Comparison of Criteria and Split Data. *Teknoinfo Journal*, *16* (1), 113–118.
- Pamuji, FY, & Ramadhan, VP (2021). Comparison of Random Forest and Decision Tree Algorithms for Predicting Immunotherapy Success. *Journal of Information Technology and Management*, 7 (1), 46–50.
- Puspita, R., & Widodo, A. (2021). Comparison of the KNN, Decision Tree, and Naïve Bayes
 Methods on the Sentiment Analysis of BPJS Service Users. J. Inform. Univ. Pamulang, 5
 (4), 646.
- Rahman, MA, Hidayat, N., & Supianto, AA (2018). Comparison of K-Nearest Neighbor and Naïve Bayes Data Mining Methods for Clean Water Quality Classification (Case Study of PDAM Tirta Kencana, Jombang Regency). Journal of Information Technology

Development and Computer Science, 2 (12), 6346–6353.

- Riadi, I., & Kom, M. (2017). Analysis of Digital Evidence of Cyberbullying in Social Networks Using the Naïve Bayes Classifier (NBC).
- Romadloni, NT, Santoso, I., & Budilaksono, S. (2019). Comparison of the Naive Bayes, Knn and Decision Tree Methods on Sentiment Analysis of KRL Commuter Line Transportation. *IKRA-ITH Informatics: Journal of Computers and Informatics*, *3* (2), 1– 9.
- Sartika, D., & Sensuse, DI (2017). Comparison of the Naive Bayes, Nearest Neighbor, and Decision Tree classification algorithms in case studies of clothing pattern selection decision making. *JATISI (Journal of Informatics Engineering and Information Systems)*, *3* (2), 151–161.
- Siregar, RRA, Siregar, ZU, & Arianto, R. (2019). Classification of Sentiment Analysis on Training Participants' Comments Using the K-Nearest Neighbor Method. *The Flash*, 8 (1), 81–92.
- Sukmana, RN, Abdurrahman, A., & Wicaksono, Y. (2020). Implementation of K-Nearest Neighbor to Determine Sales Predictions: (Case Study: Pt Maksiplus Utama Indonesia). *Journal of Information and Communication Technology*, *9* (2), 31–37.
- Wahyuningsih, S., & Utari, DR (2018). Comparison of the K-Nearest Neighbor, Naive Bayes and Decision Tree Methods for Predicting Creditworthiness. *Information Systems National Conference (KNSI) 2018*.
- Zulfauzi, Z., & Alamsyah, MN (2020). Application of the Naive Bayes Algorithm for Predicting New Student Admissions Case Study at Bina Insan University, Faculty of Computers. *Journal of Information Technology Mura*, 12 (2), 156–165.

Copyright holders: Sri Rahayu, Bayu Rimbi Asmoro, Ery Rinaldi (2023)

First publication right:

Journal of Syntax Admiration

This article is licensed under:

