Pengembangan Sistem Prediksi Perubahan Iklim Berbasis Kecerdasan Buatan untuk Manajemen Sumber Daya Alam yang Berkelanjutan di Papua
Main Article Content
Papua, as a region with significant natural resource wealth in Indonesia, faces complex challenges in managing its resources sustainably amid the growing threat of global climate change. This research aims to develop a climate change prediction system that is strengthened with artificial intelligence technology, especially through machine learning techniques, to support the management of natural resources in Papua. By utilizing climate data from the Meteorology, Climatology, and Geophysics Agency and resource extraction data from the Ministry of Energy and Mineral Resources, the proposed system seeks to integrate and analyze this information to predict climate change and its impacts in real-time. AI provides opportunities to process and analyze big data with high efficiency, resulting in more accurate and timely predictions about the impact of climate change on biodiversity, ecosystem sustainability, and natural resource accessibility. This increase in accuracy is expected to facilitate policymakers in designing efficient adaptation and mitigation strategies to respond to dynamic environmental changes. In addition, the study also explores how AI technology can contribute to natural resource management in a more innovative and sustainable way, opening up new avenues in natural resource conservation and management in Papua. The main focus is to integrate this predictive analysis into regional development planning, ensuring that economic growth takes place in harmony with environmental conservation, which is crucial for Papua's long-term sustainability.
Asian Development Bank. (2021). Climate Risk Country Profile: Indonesia. Available at: https://www.adb.org/publications/climate-risk-country-profile-indonesia [ Diakses 23 May 2024].
Climate Change Knowledge Portal. (2021). Indonesia - Climatology. The World Bank. Available at: https://climateknowledgeportal.worldbank.org/country/indonesia/climate-data-historical [ Diakses22 May 2024].
Dewitte, Steven, Cornelis, Jan P., Müller, Richard, & Munteanu, Adrian. (2021). Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
Hasanah, Sitti Uswatun. (2018). Kebijakan Perguruan Tinggi Dalam Menerapkan Pendidikan Anti Korupsi. Jurnal Pendidikan Kewarganegaraan, 2(1).
Husain, Balqis, & Ibrahim, Ibrahim. (2018). Perbedaan Prestasi Belajar Bahasa Inggris Siswa Ditinjau dari Tipe Kepribadian Introvert dan Extrovert. Qalam: Jurnal Ilmu Kependidikan, 7(2), 91–106.
Nguyen, Tung, Brandstetter, Johannes, Kapoor, Ashish, Gupta, Jayesh K., & Grover, Aditya. (2023). ClimaX: A foundation model for weather and climate. ArXiv Preprint ArXiv:2301.10343. https://doi.org/10.48550/arXiv.2301.10343
Pambudi, Rilo, Afghohani, Afif, & Farahsanti, Isna. (2019). Pengaruh Media Video Youtube Terhadap Prestasi Belajar Matematika Pada Siswa Kelas X SMK Negeri 2 Sukoharjo Tahun Ajaran 2017/2018. Jurnal Pendidikan, 28(2), 175–182.
Rahmat, Hery, & Jannatin, Miftahul. (2018). Hubungan Gaya Mengajar Guru Dengan Motivasi Belajar Siswa Pada Mata Pelajaran Bahasa Inggris. El Midad, 10(2), 98–111.
Rusniyanti, Abdullah Pandang, & Latif, Suciani. (2022). Analisis Motivasi Belajar Rendah Siswa Selama Masa Pandemi dan Penanganannya (Studi Kasus di SMA Negeri 8 Makassar). Pinisi Journal Of Education.
Sarafino, EdSarafino, E. P., & Smith, T. W. (2014). Health psychology: Biopsychosocial interactions. John Wiley &. Sons. war. P., & Smith, Timothy W. (2014). Health psychology: Biopsychosocial interactions. John Wiley & Sons.
Slater, Louise J., Arnal, Louise, Boucher, Marie Amélie, Chang, Annie Y. Y., Moulds, Simon, Murphy, Conor, Nearing, Grey, Shalev, Guy, Shen, Chaopeng, & Speight, Linda. (2023). Hybrid forecasting: blending climate predictions with AI models. Hydrology and Earth System Sciences, 27(9), 1865–1889.
Sojanah, Janah, & Kencana, Nike Putri. (2021). Motivasi dan kemandirian belajar sebagai faktor determinan hasil belajar siswa. Jurnal Pendidikan Manajemen Perkantoran, 6(2), 214–224.
Schneider, T., Charbonneau, A., Deck, K., & Watson-Parris, D. (2024). How AI is improving climate forecasts. Nature, 628, pp. 710-712. Available at: https://doi.org/10.1038/d41586-024-00780-8 [Diakses 24 May 2024].
Wahyuni, Indah Sri. (2022). Peningkatan Motivasi Belajar Siswa Kelas IX Melalui Layanan Bimbingan Kelompok Di SMPN 8 Madiun Tahun Ajaran 2019/2020. Jurnal Profesi Dan Keahlian Guru (JPKG), 3(2), 33–39.
World Bank. (2023). Indonesia Country Climate and Development Report. Available at: https://www.worldbank.org/en/country/indonesia/publication/indonesia-country-climate-and-development-report [ Diakses 22 May 2024].
Watson‐Parris, Duncan, Rao, Yuhan, Olivié, Dirk, Seland, Øyvind, Nowack, Peer, Camps‐Valls, Gustau, Stier, Philip, Bouabid, Shahine, Dewey, Maura, & Fons, Emilie. (2022). ClimateBench v1. 0: A benchmark for data‐driven climate projections. Journal of Advances in Modeling Earth Systems, 14(10), e2021MS002954.