Effect of Strontium Metal Doping on Crystal Structure and Band Gap Energy of Zinc Oxide Nanoparticles

Main Article Content

Heru Harsono
Universitas Brawijaya Malang, Jawa Timur, Indonesia
Mauludi A. Pamungkas
Universitas Brawijaya Malang, Jawa Timur, Indonesia
Ach. A. Dardiri
Universitas Brawijaya Malang, Jawa Timur, Indonesia
Febriane I. Kurnia
Universitas Brawijaya Malang, Jawa Timur, Indonesia
Cintya P. Anandari
Universitas Brawijaya Malang, Jawa Timur, Indonesia

Nanotechnology is a basic science that discusses the relationship between size, dimensions, and physical properties of nanostructured materials. This study aims to determine the effect of strontium administration on the crystal structure of ZnO nanoparticles. In this study, zinc oxide (ZnO) was doped with strontium using the coprecipitation method. The basic ingredients used are zinc chloride, strontium chloride, HCl solution, and NaOH precipitating solution. Variations in the concentration used for strontium doping are 0%, 3%, 5%, and 7%. The characterization was carried out by testing with XRD to determine the crystal structure, and UV-Vis to determine the band gap in the ZnO material. The results of the XRD diffraction test showed that the crystal structure of the sample was wurzite and orthorhombic. The crystal size was calculated using the Scherrer equation, and the crystal sizes obtained varied, namely ZnO of 101.28 nm, 3% of 61.19 nm, 5% of 94.91 nm, and 7% of 82.73 nm. The results of the characterization of the energy gap measurements carried out using the Tauc Plot method show that the application of strontium doping to ZnO nanoparticles causes a decrease in the value of the energy gap.


Keywords: Zinc Oxide, Strontium Metal, Nanoparticles, Coprecipitation, Band Gap Energy
Arshad, M., Ahmed, A. S., Azam, A., & Naqvi, A. H. (2013). Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy. Journal of Alloys and Compounds, 577, 469–474.
Belkhaoui, C., Mzabi, N., & Smaoui, H. (2019). Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Materials Research Bulletin, 111, 70–79.
El-Shazly, A. N., Rashad, M. M., Abdel-Aal, E. A., Ibrahim, I. A., El-Shahat, M. F., & Shalan, A. E. (2016). Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes. Journal of Environmental Chemical Engineering, 4(3), 3177–3184.
Fabbiyola, S., Kennedy, L. J., Dakhel, A. A., Bououdina, M., Vijaya, J. J., & Ratnaji, T. (2016). Structural, microstructural, optical and magnetic properties of Mn-doped ZnO nanostructures. Journal of Molecular Structure, 1109, 89–96.
Jiang, Z., Liu, B., Yu, L., Tong, Y., Yan, M., Zhang, R., Han, W., Hao, Y., Shangguan, L., & Zhang, S. (2023). Research progresses in preparation methods and applications of zinc oxide nanoparticles. Journal of Alloys and Compounds, 956, 170316.
Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., & Arumugam, S. (2022). Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Cleaner Materials, 3, 100041.
Karthika, K., & Ravichandran, K. (2015). Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications. Journal of Materials Science & Technology, 31(11), 1111–1117.
Kim, I. Y., Shin, S. W., Gang, M. G., Lee, S. H., Gurav, K. V, Patil, P. S., Yun, J. H., Lee, J. Y., & Kim, J. H. (2014). Comparative study of quaternary Mg and Group III element co-doped ZnO thin films with transparent conductive characteristics. Thin Solid Films, 570, 321–325.
Liang, P., Cai, H., Yang, X., Li, H., Zhang, W., Xu, N., Sun, J., & Wu, J. (2016). Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition. Spectrochimica Acta Part B: Atomic Spectroscopy, 125, 18–24.
Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907–914.
Saleh, S. M., Soliman, A. M., Sharaf, M. A., Kale, V., & Gadgil, B. (2017). Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. Journal of Environmental Chemical Engineering, 5(1), 1219–1226.
Sangeetha, R., Muthukumaran, S., & Ashokkumar, M. (2015). Structural, optical, dielectric and antibacterial studies of Mn doped Zn0. 96Cu0. 04O nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 1–7.
Shatnawi, M., Alsmadi, A. M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G. M., Al-Dweri, F., & Bawa’aneh, M. S. (2016). Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Results in Physics, 6, 1064–1071.
Ungula, J., & Dejene, B. F. (2016). Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Physica B: Condensed Matter, 480, 26–30.
Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Deng, R., & Liu, X. (2022). Rare-earth doping in nanostructured inorganic materials. Chemical Reviews, 122(6), 5519–5603.