Implementasi Yolo V8 pada Prototipe Autonomous Underwater Robot Berbasis Raspberry Pi 5 Guna Menanggulangi Pencemaran Sampah Plastik di Daerah Perairan
Main Article Content
Plastic waste pollution in aquatic environments threatens marine ecosystems and human health. This study developed a prototype Autonomous Underwater Robot (AUR) based on Raspberry Pi 5, equipped with the YOLO V8 algorithm for real-time detection and classification of plastic waste. Additionally, the AUR uses a PID control system that enables movement stabilization and accurate navigation towards the target. Testing was conducted to evaluate object detection accuracy using mAP and IoU metrics, as well as the PID control performance in maintaining orientation stability. Results indicate that YOLO V8 on the AUR can detect and classify objects with an mAP of 0.6772 at IoU 0.5 and a detection accuracy of 89.6%. The PID control system, with an optimal parameter setting (Kp:Ki:Kd = 125:12:8), achieved an object center accuracy of 96.4%, orientation stability of 90.8%, and a completion time of 2 seconds, demonstrating the efficiency of the AUR in addressing plastic waste in aquatic environments effectively and sustainably.
Chaturvedi, Snigdha, & Kumar, Narendra. (2023). Design and implementation of an optimized PID controller for the adaptive cruise control system. IETE Journal of Research, 69(10), 7084–7091. https://doi.org/10.1080/03772063.2021.2012282
Hakim, Muhammad Zulfan. (2019). Pengelolaan dan pengendalian sampah plastik berwawasan lingkungan. Amanna Gappa, 111–121.
Mohammed, Sazan, Ab Razak, Mohd Zulhakimi, & Abd Rahman, Abdul Hadi. (2022). An Efficient Intersection Over Union Loss Function for 3D Object Detection. 2022 Iraqi International Conference on Communication and Information Technologies (IICCIT), 38–43. IEEE.
Rukhovich, Danila, Vorontsova, Anna, & Konushin, Anton. (2022). Imvoxelnet: Image to voxels projection for monocular and multi-view general-purpose 3d object detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2397–2406.
Sahafi, Ali, Koulaouzidis, Anastasios, & Lalinia, Mehrshad. (2024). Polypoid lesion segmentation using YOLO-V8 network in wireless video capsule endoscopy images. Diagnostics, 14(5), 474. https://doi.org/10.3390/diagnostics14050474
Sánchez, Pedro José Bernalte, Papaelias, Mayorkinos, & Márquez, Fausto Pedro García. (2020). Autonomous underwater vehicles: Instrumentation and measurements. IEEE Instrumentation & Measurement Magazine, 23(2), 105–114. https://doi.org/10.1109/MIM.2020.9062680
Siswoputro, Suspada, Perwita, Anak Agung Banju, Suseto, Budi, & Prakoso, Lukman Yudho. (2024). The World’s Maritime Axis, A Critical Analysis. Formosa Journal of Science and Technology, 3(3), 447–460. https://doi.org/10.55927/fjst.v3i3.7655
Stodt, Jan, Reich, Christoph, & Clarke, Nathan. (2023). Unified intersection over union for explainable artificial intelligence. Proceedings of SAI Intelligent Systems Conference, 758–770. https://doi.org/10.1007/978-3-031-47724-9_50
Tianjiao, Liang, & Hong, Bao. (2020). A optimized YOLO method for object detection. 2020 16th International Conference on Computational Intelligence and Security (CIS), 30–34. IEEE.
Umniyyatin, Alfi. (2023). ANALISIS KESESUAIAN PRASARANA PERMUKIMAN SEKITAR INDUSTRI TEPUNG TAPIOKA DI DUKUH MOJOSEMI (STUDI KASUS: DESA MOJOAGUNG, KECAMATAN TRANGKIL, KABUPATEN PATI). Universitas Islam Sultan Agung Semarang.
Wasslawa, Manna. (2018). Sistem Pengelolaan Sampah di Tempat Pembuangan Akhir (TPA) Blang Bintang sebagai Referensi Matakuliah Ekologi dan Masalah Lingkungan. UIN Ar-Raniry Banda Aceh.
Wijaya, Krishna Aji, & Setyawan Purnama, Ig L. (2018). Kajian Kerentanan Airtanah Terhadap Potensi Pencemaran di Kecamatan Kasihan Kabupaten Bantul. Jurnal Bumi Indonesia, 7(1), 1–10.
Yang, Ruochen, Utne, I., Liu, Yiliu, & Paltrinieri, Nicola. (2020). Dynamic risk analysis of operation of the autonomous underwater vehicle (AUV). The 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management. https://doi.org/10.3850/978-981-14-8593-0_4118-cd
Zhang, Hao, & Zhang, Shuaijie. (2024). Focaler-IoU: More Focused Intersection over Union Loss. ArXiv Preprint ArXiv:2401.10525.