Pengembangan Sistem Klasifikasi Diagnosa Medis Menggunakan Progressive Web Application Terintegrasi Machine Learning
Main Article Content
This research aims to present a solution that not only improves efficiency in coding medical diagnoses, but also ensures high accuracy at various levels of case complexity. The classification of medical diagnoses is a crucial aspect of health information management, particularly in coding diagnoses into the ICD-10 and ICD-9CM standards. A Progressive Web Application (PWA) has been developed to automate this process, leveraging Machine Learning technology with the Sentence Transformer model architecture "paraphrase-multilingual-mpnet-base-v2." The application development follows a prototyping method, enabling an iterative process focused on user needs and delivering an effective and efficient solution. The application incorporates key PWA features such as offline access, push notifications, and installation as a standalone application on user devices. The backend is built using Flask to handle medical diagnosis input and generate classification predictions through integration with the machine learning model. Meanwhile, the frontend utilizes React.js to provide a responsive and user-friendly interface. Testing results indicate that the application delivers highly accurate diagnosis classifications, even for complex cases. With its features and capabilities, this application has the potential to enhance the efficiency and accuracy of medical diagnosis coding processes in healthcare facilities.
A. Zarkasi, D. D. Mahendra, M. A. Fadilla, and M. N. Halim, “Rancang Bangun Sendok Penderita Parkinson Menggunakan Mikrokontroller ESP-32,” Annual Research Seminar (ARS), vol. 5, no. 1, pp. 242–246, Feb. 2020
Arsad, A., Hamid, M., & Santosa, M. (2024). PENERAPAN TEKS MINING DAN COSINE SIMILARITY UNTUK MENENTUKAN KESAMAAN DOKUMEN SKRIPSI. IJIS-Indonesian Journal On Information System, 9(1), 99–109.
A. Baradja and S. Sukoco, “Pemanfaatan Recurrent Neural Network (RNN) Untuk Meningkatkan Akurasi Prediksi Mata Uang Pada Forex Trading,” Journal of Software Engineering Ampera, vol. 4, no. 2, pp. 119–131, Jun. 2023, doi: 10.51519/JOURNALSEA.V4I2.505.
Berliana, N. W., Nafisca, N. A., & Kusumasari, I. R. (2024). ANALISIS BIG DATA DALAM MEMPENGARUHI SEBUAH PENGAMBILAN KEPUTUSAN. Musytari: Neraca Manajemen, Akuntansi, Dan Ekonomi, 9(9), 41–50.
Elmrabit, N., Zhou, F., Li, F., & Zhou, H. (2020). Evaluation of machine learning algorithms for anomaly detection. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 1–8.
Fadilla, M. A., Setiawan, H., & Ramadhan, M. (2023). Implementasi Metode Convolutional Neural Network (CNN) Pada Sistem Deteksi Emosi Dari Ekspresi Wajah Manusia Dengan Aplikasi Android Sebagai Antarmuka Pengguna. Jurnal Ilmu Komputer Dan Sistem Informasi, 9(4).
Fadilla, M. A., & Sutabri, T. (2024). PERANCANGAN DAN IMPLEMENTASI APLIKASI UNTUK MENGKLASIFIKASI PROSEDUR MEDIS BERDASARKAN DIAGNOSIS MEDIS MENGGUNAKAN MACHINE LEARNING. Jurnal Rekayasa Sistem Informasi Dan Teknologi, 2(2), 696–705.
Harrison, J. E., Weber, S., Jakob, R., & Chute, C. G. (2021). ICD-11: an international classification of diseases for the twenty-first century. BMC Medical Informatics and Decision Making, 21, 1–10. https://doi.org/10.1186/S12911-021-01534-6.
Hasri, E. T., & Djasri, H. (2021). Evaluasi Kebijakan Mutu Layanan Kesehatan dalam Era JKN di Provinsi DKI Jakarta: Studi Kasus Hipertensi dengan Data Sistem Kesehatan (DaSK). Jurnal Kebijakan Kesehatan Indonesia: JKKI, 10(3), 136–142.
Mandia, S., & Nasution, N. (2024). Socialization and Workshop of Coding Based on ICD-10 and ICD-9 Cm Regulations at Mental Hospital Prof Hb Saanin Padang. ABDIMAS: Jurnal Pengabdian Masyarakat, 7(3), 1010–1018. https://doi.org/10.35568/abdimas.v7i3.4899.
Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. ArXiv Preprint ArXiv:2202.08904.
Noels, S., Viaene, S., & De Bie, T. (2024). TopoLedgerBERT: Topological Learning of Ledger Description Embeddings using Siamese BERT-Networks. ArXiv Preprint ArXiv:2407.05175.
P. Qiu et al., “Towards building multilingual language model for medicine,” Nature Communications 2024 15:1, vol. 15, no. 1, pp. 1–15, Sep. 2024, doi: 10.1038/s41467-024-52417-z.
Reimers, N. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. ArXiv Preprint ArXiv:1908.10084. https://doi.org/10.18653/v1/d19-1410.
Riza, H., Santoso, E. W., Tejakusuma, I. G., & Prawiradisastra, F. (2020). Advancing flood disaster mitigation in Indonesia using machine learning methods. 2020 International Conference on ICT for Smart Society (ICISS), 1–4.
R. Pradita and Monadia, “Tinjauan Pelaksanaan Coding Diagnosa Dan Tindakan Pada Implementasi Rekam Medis Elektronik Puskemas Botania,” Jurnal Manajemen Informasi Kesehatan (Health Information Management), vol. 9, no. 1, pp. 176–185, Nov. 2024, Accessed: Dec. 03, 2024. [Online]. Available: https://ojs.stikessaptabakti.ac.id/jmis/article/view/481
S. L. Rahma and U. Taufiq, “Analisis Tingkat Akurasi Metode Pendeteksian Plagiarisme Ide dengan menggunakan Yake dan Sentence Transformer,” Journal of Internet and Software Engineering, vol. 5, no. 1, pp. 15–22, May 2024, doi: 10.22146/JISE.V5I1.9073.
Tayfur, G., Singh, V. P., Moramarco, T., & Barbetta, S. (2018). Flood hydrograph prediction using machine learning methods. Water, 10(8), 968.
Wahyuni, R. T., Prastiyanto, D., & Supraptono, E. (2017). Penerapan algoritma cosine similarity dan pembobotan tf-idf pada sistem klasifikasi dokumen skripsi. Jurnal Teknik Elektro, 9(1), 18–23. https://doi.org/10.15294/JTE.V9I1.10955.
Zhang, M., Wang, Y., Jakob, R., Su, S., Bai, X., Jing, X., Xue, X., Liao, A., Li, N., & Wang, Y. (2024). Methodologies and key considerations for implementing the International Classification of Diseases-11th revision morbidity coding: insights from a national pilot study in China. Journal of the American Medical Informatics Association, 31(5), 1084–1092. https://doi.org/10.1093/jamia/ocae031.