Analysis Of The Effect Of Co-Firing On Boiler Loading Limitations Using Computational Fluid Dynamic (CFD) Methods
Main Article Content
The increasing depletion of high-calorific coal resources has driven coal-fired power plants (PLTU) to switch to low-calorific coal with calorific values ranging from 4,200 to 4,800 kcal/kg. Simultaneously, the Indonesian government aims to achieve a renewable energy mix of 23% by 2025 and 31.2% by 2050, promoting the co-firing of biomass with coal at rates of 5% to 12%. However, this transition presents operational challenges, such as altered combustion characteristics, overheating in superheater zones, and increased slagging and fouling potential. This study aims to analyze the impact of co-firing biomass with coal on boiler performance at a 600 MW PLTU using Computational Fluid Dynamics (CFD) simulations. Data inputs include coal specifications and biomass mixing ratios of 3%, 5%, 8%, and 12%. Simulations were conducted using Ansys Fluent software to assess variations in temperature, pressure, and flow distribution. The results indicate that increasing biomass percentages reduces combustion temperatures and alters the distribution of key combustion byproducts, such as H₂O and SO₂. A higher biomass ratio mitigates the risk of overheating but requires careful operational adjustments to maintain efficiency. The findings support the optimization of co-firing operations, contributing to reduced carbon emissions and compliance with Indonesia’s renewable energy targets. This study provides actionable insights for improving PLTU performance while aligning with sustainable energy goals.
Aspriliansyah, I. P., & Adiwibowo, P. H. (2020). Simulasi Numerik Pengaruh Kemiringan Sudut Sudu Berpenampang Plat Datar Terhadap Kinerja Turbin Aliran Vortex. Jurnal Teknik Mesin, 8(2).
Herindrasti, S., Angelina, B., & Putriwinata, P. (2024). Pengembangan Kebijakan Energi Terbarukan Di Indonesia, Vietnam, Dan Laos. Sospol, 10(2), 154–172.
Kirichkov, V. S., Prokhorov, V. B., Chernov, S. L., & Kaverin, A. A. (2020). Investigation Of The Interaction Of Turbulent Jets In Furnaces With Direct-Flow Burners For High-Power Boilers. Journal Of Physics: Conference Series, 1565(1), 12024.
Madejski, P. (2018). Numerical Study Of A Large-Scale Pulverized Coal-Fired Boiler Operation Using CFD Modeling Based On The Probability Density Function Method. Applied Thermal Engineering, 145, 352–363.
Manurung, T. A. (2020). Studi Numerik Co-Firing Batubara Dan Biomassa Dengan Variasi Persentase Biomassa Terhadap Performa Pembangkit 400 MW. Institut Teknologi Sepuluh Nopember.
Nugraha, E. L. (2016). Analisis Komposisi Pembakaran Pada Proses Pembuatan Clinker Di Pabrik Tuban I Pt Semen Indonesia (Persero) Tbk Berbasis Computational Fluid Dynamics. Surabaya: Institut Teknologi Sepuluh Nopember.
Obbie, P. A. (2024). Studi Pengaruh Excess Air Dan Rasio Campuran Bahan Bakar Pada Co-Firing Batubara Dan Tandan Kosong Kelapa Sawit Berbasis Computational Fluid Dynamic (CFD). Universitas Lampung.
Rodion, Q. (2023). Modifikasi Tungku Co-Firing Batu Bara Dan Biomassa Tertorefaksi Dengan Penambahan Secondary Air.
Saputri, N. A. R. (2017). Analisis Termal Glycol Reboiler (5 Psig, 550of) Pada Dehydration Unit Cpp-Ppgj Gundih. Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.
Sung, Y., Moon, C., Eom, S., Choi, G., & Kim, D. (2016). Coal-Particle Size Effects On NO Reduction And Burnout Characteristics With Air-Staged Combustion In A Pulverized Coal-Fired Furnace. Fuel, 182, 558–567.
Taler, D., Trojan, M., Dzierwa, P., Kaczmarski, K., & Taler, J. (2018). Numerical Simulation Of Convective Superheaters In Steam Boilers. International Journal Of Thermal Sciences, 129, 320–333.
Wu, D., Zhou, P., Yan, H., Shi, P., & Zhou, C. Q. (2019). Numerical Investigation Of The Effects Of Size Segregation On Pulverized Coal Combustion In A Blast Furnace. Powder Technology, 342, 41–53.
Yi, B., Zhang, L., Mao, Z., Huang, F., & Zheng, C. (2014). Effect Of The Particle Size On Combustion Characteristics Of Pulverized Coal In An O2/CO2 Atmosphere. Fuel Processing Technology, 128, 17–27.