Uji Analisis Nikel Ore/Ni (Sampel Cek) Menggunakan Metode Press Pellet Berdasarkan Variasi Suhu Pengeringan, Waktu Pengeringan, dan Berat Sampel Timbangan Press

Main Article Content

Suwendi Suwendi
Universitas Fajar, Makassar, Indonesia
Sinardi Sinardi
Universitas Fajar, Makassar, Indonesia

The purpose of the study was to determine the changes in nickel levels as a result of the analysis on the variation in temperature and drying time as well as the weight of press pellet scale samples from one of the same sample types. This research method is in the form of an experiment with a factorial research design from analysis parameters in the form of MC percentage and nickel ore content of Ni element. The results of the analysis showed that drying at 105°C and 125°C achieved a constant MC during a heating time of 5 to 6 hours. Meanwhile, at a temperature of 145-185 degrees Celsius with an interval of 2-6 hours, the MC level has experienced a constant weight of 44.44%. At the same temperature treatment, which is 105oC, different constant times are obtained. This is influenced by the difference in weight between the two samples, namely in the AP/5 and AP/6 range of 0.360 grams, while AP ORI weighs 1.8 kg. The results of the Epsilon 4 reading showed that the variation in drying temperature at 105°C to 185°C and drying time of 3-6 hours affected the nickel ore content in the range of 1.50% to 1.53%, close to the standard value of nickel 1.50%. The lower the temperature and drying time, the humidity level of the sample increases, causing the nickel ore content to decrease, while the higher the temperature and drying time increases the risk of nickel decomposition. The optimum temperature and drying time is 165°C for 2-4 hours. The press sample weight is between 8-14 grams resulting in a stable nickel content at 1.47%-1.50%, with an optimum weight of 10-14 grams for optimal sample thickness and density.


Keywords: Weight of Scales, Nickel Ore, Temperature, Time
Aprianto, Yusril, & Triastianti, Rita Dewi. (2018). Pemanfaatan Limbah Padat Slag Nikel, Abu Sekam Padi, dan Fly Ash Menjadi Paving Block. Jurnal Rekayasa Lingkungan, 18(1).
Astuti, Widi, Zulhan, Zulfiadi, Shofi, Achmad, Isnugroho, Kusno, Nurjaman, Fajar, & Prasetyo, Erik. (2012). Pembuatan nickel pig iron (NPI) dari bijih nikel laterit Indonesia menggunakan mini blast furnace. Seminar Insentif Riset SINas. Jakarta: Asdep Relevansi Program Riptek, p. MT66-MT71. Available at: Http://Biofarmaka. Ipb. Ac. Id/Biofarmaka/2013/PIRS.
Axel, Jack. (2023). Analisis Perubahan Kadar Bijih Nikel Laterit Dari Data Pengeboran Inpit Sampai ke Tahap Penambangan Berdasarkan Analisa XRF di PT. Antam Kolaka= Analysis of Changes in Laterite Nickel Ore Content from Inpit Drilling Data to the Mining Stage Based on XRF Analysis at PT. Antam Kolaka. Universitas Hasanuddin.
Cahyaningtyas, D., Suseno, T., Rochani, S., Yunianto, B., & Rodliyah, I. (2021). The role of iron and nickel smelters for the Indonesian steel industries. IOP Conference Series: Earth and Environmental Science, 882(1), 12076. IOP Publishing.
Faiz, Mifta Achmad, Sufriadin, Sufriadin, & Widodo, Sri. (2020). Analisis Perbandingan Kadar Bijih Nikel Laterit Antara Data Bor dan Produksi Penambangan: Implikasinya Terhadap Pengolahan Bijih Pada Blok X, PT. Vale Indonesia, Tbk. Sorowako. Jurnal Penelitian Enjiniring, 24(1), 93–99.
Helvacı, Cahit, Oyman, Tolga, Gündoğan, İbrahim, Sözbilir, Hasan, Parlak, Osman, Kadir, Selahattin, & Güven, Necip. (2018). Mineralogy and genesis of the Ni–Co lateritic regolith deposit of the Çaldağ area (Manisa, western Anatolia), Turkey. Canadian Journal of Earth Sciences, 55(3), 252–271. https://doi.org/10.1139/cjes-20170184
Maulina, Rina. (2022). Konversi Minyak Kelapa Sawit Menjadi Biofuel Melalui Proses Continue Hydrocracking Dengan Katalis Nikel Oksida-Kadmium Oksida/Karbon Aktif. Universitas Islam Indonesia.
Muas, Ananda Mustika. (2019). Upaya China Dalam Memenuhi Kebutuhan Nikel Dalam Negeri Pasca Kebijakan UU MINERBA No. 4 Tahun 2009 di Indonesia. Ejournal. Hi. Fisip-Umul. Ac. Id, Ilmu Hubungan Internasional, 7.
Pringgodani, M. Ghufron. (2023). RENCANA TAHAPAN PENAMBANGAN NIKEL LATERIT UNTUK MENCAPAI TARGET PRODUKSI 1.000. 000 WMT ORE TAHUN 2023 DI AREA BLOK T PT ANTAM TBK. Teknik Pertambangan.
Rahayu, Sekar Wiji, & Sugianto, Fajar. (2020). Implikasi Kebijakan Dan Diskriminasi Pelarangan Ekspor Dan Impor Minyak Kelapa Sawit Dan Bijih Nikel Terhadap Perekonomian Indonesia. DiH: Jurnal Ilmu Hukum, 16(2), 373034.
Ramadhani, Khusnul, AP, AMBMK, Amalia, Rezki, Sefina, Muh, Rahmat, Wawan, Nabila, Fathiyah, Gazali, Dimang, Ramadhani, Andi Nurazizah, Syahratulangi, Andi, & Imran, M. Reza. (2023). Aspek hukum pertambangan dan pengelolaan lingkungan hidup. PT Dewangga Energi Internasional.
Sebastyantito, ABIM. (2019). Pengaruh Temperatur Elektrolit Dan Waktu Proses Elektroplating Kuningan Pada Baja Karbon Rendah Terhadap Daya Lekat. Surabaya Inst. Teknol. Sepuluh Nop.
Tsirwiyati, Dwi Najah. (2023). Kebijakan Larangan Ekspor Nikel Indonesia. Jurnal Hukum Respublica, 22(2).
Wang, Hong Yang, Li, Yu, Jiao, Shu Qiang, Chou, Kuo Chih, & Zhang, Guo Hua. (2023). Recovery of Ni matte from Ni-bearing electroplating sludge. Journal of Environmental Management, 326, 116744. https://doi.org/10.1016/j.jenvman.2022.116744
Zhang, Yingyi, Qie, Junmao, Wang, Xun Fu, Cui, Kunkun, Fu, Tao, Wang, Jie, & Qi, Yuanhong. (2020). Mineralogical characteristics of the nickel laterite, southeast ophiolite belt, Sulawesi Island, Indonesia. Mining, Metallurgy & Exploration, 37, 79–91. https://doi.org/10.1007/s42461-019-00147-y